Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Environ Sci Pollut Res Int ; 30(13): 36325-36336, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2280437

ABSTRACT

The current work focuses on designing a low-cost, reusable, and highly efficient facemask for protection from respiratory droplets that cause COVID-19, other infection-causing organisms, and dust allergies. Several masks available in the market are single-use that would choke the environment through plastic pollution or are expensive for the commoner to afford. In the present study, the facemask incorporates a waste-derived polyethylene terephthalate (PET) layer and a non-woven polypropylene (PP) layer sandwiched between two tightly woven cotton layers. Combining these layers provides comfort and breathability, besides high bacterial and particulate filtration efficiency. Moreover, the unique PET layer provides mechanical strength and a 3D shape that enables hindrance-free speaking and prevents spectacle fogging. Compared to commercial N95 masks, the developed mask can be reused up to 30 washes and recycled with zero waste discharge ensuing green technology. Moreover, the mask was produced at an affordable cost of Rs. 17 (0.22 USD), including labor charges, and sold at a 100% profit margin @ Rs.35 (0.45 USD) per unit. Further, the mask was certified by neutral testing agencies and provided to a population of more than 6 lakhs, thus significantly contributing to the mitigation of COVID-19.


Subject(s)
COVID-19 , Masks , Humans , Plastics , Textiles , Polyethylene Terephthalates , Preventive Health Services
2.
Sci Total Environ ; 872: 162159, 2023 May 10.
Article in English | MEDLINE | ID: covidwho-2229163

ABSTRACT

The 2019 global coronavirus disease pandemic has led to an increase in the demand for polyethylene terephthalate (PET) packaging. Although PET is one of the most recycled plastics, it is likely to enter the aquatic ecosystem. To date, the chronic effects of PET microplastics (MPs) on aquatic plants have not been fully understood. Therefore, this study aimed to investigate the adverse effects of PET MP fragments derived from PET bottles on the aquatic duckweed plant Lemna minor through a multigenerational study. We conducted acute (3-day exposure) and multigenerational (10 generations from P0 to F9) tests using different-sized PET fragments (PET0-200, < 200 µm; PET200-300, 200-300 µm; and PET300-500, 300-500 µm). Different parameters, including frond number, growth rate based on the frond area, total root length, longest root length, and photosynthesis, were evaluated. The acute test revealed that photosynthesis in L. minor was negatively affected by exposure to small-sized PET fragments (PET0-200). In contrast, the results of the multigenerational test revealed that large-sized PET fragments (PET300-500) showed substantial negative effects on both the growth and photosynthetic activity of L. minor. Continuous exposure to PET MPs for 10 generations caused disturbances in chloroplast distribution and inhibition of plant photosynthetic activity and growth. The findings of this study may serve as a basis for future research on the generational effects of MPs from various PET products.


Subject(s)
Araceae , Water Pollutants, Chemical , Microplastics , Plastics , Polyethylene Terephthalates/toxicity , Ecosystem , Water Pollutants, Chemical/analysis , Photosynthesis , Polyethylene
3.
Chemosphere ; 309(Pt 1): 136748, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2060531

ABSTRACT

The fight against the COVID-19 epidemic significantly raises the global demand for personal protective equipment, especially disposable face masks (DFMs). The discarded DFMs may become a potential source of microplastics (MPs), which has attracted much attention. In this work, we identified the detailed source of MPs released from DFMs with laser direct infrared spectroscopy. Polypropylene (PP) and polyurethane (PU) accounted for 24.5% and 57.1% of released MPs, respectively. The melt-blown fabric was a dominant MPs source, however, previous studies underestimated the contribution of mask rope. The captured polyethylene terephthalate (PET), polyamide (PA), polyethylene (PE), and polystyrene (PS) in airborne only shared 18.4% of released MPs. To deepen the understanding of MPs release from medical mask into the aquatic environment, we investigated the effects of environmental factors on MPs release. Based on regression analysis, the effects of temperature, incubation time, and wearing time significantly affect the release of MPs. Besides, acidity, alkalinity, sodium chloride, and humic acid also contributed to the MPs release through corroding, swelling, or repulsion of fibers. Based on the exposure of medical mask to simulated environments, the number of released MPs followed the order: seawater > simulated gut-fluid > freshwater > pure water. Considering the risk of MPs released from DFMs to the environment, we innovatively established a novel flotation removal system combined with cocoamidopropyl betaine, achieving 86% removal efficiency of MPs in water. This work shed the light on the MPs release from DFMs and proposed a removal strategy for the control of MPs pollution.


Subject(s)
COVID-19 , Water Pollutants, Chemical , Humans , Microplastics , Plastics , Polystyrenes/chemistry , Polypropylenes , Polyethylene Terephthalates , Humic Substances , Masks , Nylons , Polyurethanes , Sodium Chloride , Betaine , Water Pollutants, Chemical/analysis , Polyethylene/chemistry , Water
4.
Environ Sci Process Impacts ; 24(10): 1855-1866, 2022 Oct 19.
Article in English | MEDLINE | ID: covidwho-2036940

ABSTRACT

Disposable wipes and masks have come to be considered as underestimated sources of microfiber generation since the emergence of COVID-19. However, research into the creation of microfibers due to wiping with these non-woven products is scarce, and the potential effects of fabric properties on shedding behavior are unclear. This study investigated microfiber release from 7 wet wipes, 5 dry wipes, and 4 masks in response to the use of simulated daily wiping conditions on artificial skin. The dry wipes (77-568 p per sheet) shed more microfibers than the wet ones (21-190 p per sheet) after 2, 10, or 50 wiping cycles under a 9.8 N wiping force. In addition, an average of 56 microfibers could be released from per gram of wipe, and each square centimeter of wipe could release about 1.18 microfibers during wiping. Masks shed fewer microfibers than wipes due to the excellent shedding resistance of spunbond nonwoven fabrics and the strengthened mechanical properties granted by bonding points. Cellulose, polyethylene terephthalate (PET), and polypropylene (PP) were the major polymers in the microfibers shed by wipes, and the microfibers from masks were all PP. With regard to the influencing factors, the number of microfibers shed from wipes was positively associated with the number of wiping cycles (r = 0.983 and 0.960, p < 0.01) and wiping force (r = 0.980, p < 0.05), while it was negatively correlated with the moisture content (r = -0.992, p < 0.01). Interestingly, a stronger fiber entanglement degree in the wipes significantly improved the resistance to microfiber generation (r = -0.664, p < 0.05). The results highlighted for the first time that the bending coefficient (ß = -5.05; 95% CI: -7.71, -2.40; p = 0.002) and fiber extraction force (ß = -0.077; 95% CI: -0.123, -0.030; p = 0.005) significantly reduced the tendency for microfiber shedding. Although the number of microfibers shed from wiping was lower than those from domestic washing, there is still an urgent need to control the microfiber shedding tendencies of non-woven products through improving the manufacturing processes.


Subject(s)
COVID-19 , Polypropylenes , Humans , Polyethylene Terephthalates , Textiles , Cellulose
5.
Int J Mol Sci ; 23(18)2022 Sep 11.
Article in English | MEDLINE | ID: covidwho-2032985

ABSTRACT

The nano-metal-treated PET films with anti-virus and anti-fogging ability were developed using sparking nano-metal particles of Ag, Zn, and Ti wires on polyethylene terephthalate (PET) films. Ag nanoparticles were detected on the PET surface, while a continuous aggregate morphology was observed with Zn and Ti sparking. The color of the Ag-PET films changed to brown with increasing repeat sparking times, but not with the Zn-PET and Ti-PET films. The water contact angle of the nano-metal-treated PET films decreased with increasing repeat sparking times. The RT-PCR anti-virus test confirmed the high anti-virus efficiency of the nano-metal-treated PET films due to the fine particle distribution, high polarity, and binding of the nano-metal ions to the coronavirus, which was destroyed by heat after UV irradiation. A highly transparent, anti-fogging, and anti-virus face shield was prepared using the Zn-PET film. Sparking was an effective technique to prepare the alternative anti-virus and anti-fogging films for medical biomaterial applications because of their low cost, convenience, and fast processing.


Subject(s)
Coronavirus , Metal Nanoparticles , Biocompatible Materials/chemistry , Metal Nanoparticles/chemistry , Polyethylene Terephthalates/chemistry , Silver/chemistry , Surface Properties , Water
6.
Environ Sci Pollut Res Int ; 29(39): 59118-59126, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-2000057

ABSTRACT

Since the year 2020, the use of plastic as a strategy to mitigate the spread of COVID-19 disease has been given substantial attention. Global environmental contamination of plastic creates waste and is a known threat to soil ecosystems as a main sink of microplastics. However, there is still considerable uncertainty about microplastics controlling soil properties alteration. Therefore, we carried out an incubation experiment with soil and Carex stenophylla Wahlenb., which are the dominant soil and grass species in semi-arid regions. We investigated the effect of polymer polyethylene terephthalate (PET) concentrations (0%, 1%, 3%, and 5%) on C. stenophylla growth and soil ammonium-N and nitrate-N, organic matter content, pH, soil aggregates, and soil respiration. When soils were exposed to PET microplastics, fewer seeds germinated (62.8 ± 32%) but not significantly (p value > 0.05) when soils were treated to 0, 1, 3, and 0.5% PET. Shoot height was also not effectively reduced with PET. The soil pH was considerably lower when exposed to higher PET compared to all other treatments with the soil exposed to 5% w/w PET for both unplanted and planted, being 0.84 and 0.54 units, respectively, lower than the controls. The soil microbial respiration under exposure to PET was considerably increased in comparison to control samples. Moreover, the presence of PET resulted in potential alterations of soil stability, and with PET present soil stability increased. In conclusion, PET microplastics cannot significantly affect the development of C. stenophylla but could affect crucial soil properties. In addition, changes occurred with increased variability in soil ammonium-N and nitrate-N, particularly at a high PET ratio.


Subject(s)
Ammonium Compounds , COVID-19 , Ecosystem , Microplastics , Nitrates , Plastics , Poaceae , Polyethylene Terephthalates , Soil/chemistry
7.
Int J Mol Sci ; 23(10)2022 May 17.
Article in English | MEDLINE | ID: covidwho-1875644

ABSTRACT

The global utilization of single-use, non-biodegradable plastics, such as bottles made of polyethylene terephthalate (PET), has contributed to catastrophic levels of plastic pollution. Fortunately, microbial communities are adapting to assimilate plastic waste. Previously, our work showed a full consortium of five bacteria capable of synergistically degrading PET. Using omics approaches, we identified the key genes implicated in PET degradation within the consortium's pangenome and transcriptome. This analysis led to the discovery of a novel PETase, EstB, which has been observed to hydrolyze the oligomer BHET and the polymer PET. Besides the genes implicated in PET degradation, many other biodegradation genes were discovered. Over 200 plastic and plasticizer degradation-related genes were discovered through the Plastic Microbial Biodegradation Database (PMBD). Diverse carbon source utilization was observed by a microbial community-based assay, which, paired with an abundant number of plastic- and plasticizer-degrading enzymes, indicates a promising possibility for mixed plastic degradation. Using RNAseq differential analysis, several genes were predicted to be involved in PET degradation, including aldehyde dehydrogenases and several classes of hydrolases. Active transcription of PET monomer metabolism was also observed, including the generation of polyhydroxyalkanoate (PHA)/polyhydroxybutyrate (PHB) biopolymers. These results present an exciting opportunity for the bio-recycling of mixed plastic waste with upcycling potential.


Subject(s)
Microbial Consortia , Polyethylene Terephthalates , Bacteria/genetics , Bacteria/metabolism , Plasticizers , Plastics/metabolism
8.
Int J Mol Sci ; 22(17)2021 Sep 01.
Article in English | MEDLINE | ID: covidwho-1390656

ABSTRACT

Transparent materials used for facial protection equipment provide protection against microbial infections caused by viruses and bacteria, including multidrug-resistant strains. However, transparent materials used for this type of application are made of materials that do not possess antimicrobial activity. They just avoid direct contact between the person and the biological agent. Therefore, healthy people can become infected through contact of the contaminated material surfaces and this equipment constitute an increasing source of infectious biological waste. Furthermore, infected people can transmit microbial infections easily because the protective equipment do not inactivate the microbial load generated while breathing, sneezing or coughing. In this regard, the goal of this work consisted of fabricating a transparent face shield with intrinsic antimicrobial activity that could provide extra-protection against infectious agents and reduce the generation of infectious waste. Thus, a single-use transparent antimicrobial face shield composed of polyethylene terephthalate and an antimicrobial coating of benzalkonium chloride has been developed for the next generation of facial protective equipment. The antimicrobial coating was analyzed by atomic force microscopy and field emission scanning electron microscopy with elemental analysis. This is the first facial transparent protective material capable of inactivating enveloped viruses such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in less than one minute of contact, and the methicillin-resistant Staphylococcus aureus and Staphylococcus epidermidis. Bacterial infections contribute to severe pneumonia associated with the SARS-CoV-2 infection, and their resistance to antibiotics is increasing. Our extra protective broad-spectrum antimicrobial composite material could also be applied for the fabrication of other facial protective tools such as such as goggles, helmets, plastic masks and space separation screens used for counters or vehicles. This low-cost technology would be very useful to combat the current pandemic and protect health care workers from multidrug-resistant infections in developed and underdeveloped countries.


Subject(s)
Anti-Infective Agents/pharmacology , Drug Resistance, Multiple, Bacterial/drug effects , Personal Protective Equipment , Anti-Infective Agents/chemistry , Bacteriophage phi 6/drug effects , Benzalkonium Compounds/chemistry , Benzalkonium Compounds/pharmacology , COVID-19/pathology , COVID-19/virology , Disk Diffusion Antimicrobial Tests , Humans , Methicillin-Resistant Staphylococcus aureus/drug effects , Polyethylene Terephthalates/chemistry , SARS-CoV-2/drug effects , SARS-CoV-2/isolation & purification , Staphylococcus epidermidis/drug effects
9.
Ann Vasc Surg ; 73: 557-560, 2021 May.
Article in English | MEDLINE | ID: covidwho-1312937

ABSTRACT

Aneurysms and occlusive pathologies of the aorta are frequently associated with atherosclerosis; however, thoracoabdominal aortic aneurysm accompanied by Leriche syndrome is an extremely rare condition with challenging treatment strategy and without established surgical treatment protocols. In this report, we present our treatment strategy in a 64-year-old male patient with ischemic heart disease and type 5 thoracoabdominal aortic aneurysm accompanied by Leriche syndrome.


Subject(s)
Aortic Aneurysm, Thoracic/surgery , Blood Vessel Prosthesis Implantation , Coronary Artery Bypass , Coronary Artery Disease/surgery , Leriche Syndrome/surgery , Saphenous Vein/transplantation , Aortic Aneurysm, Thoracic/complications , Aortic Aneurysm, Thoracic/diagnostic imaging , Blood Vessel Prosthesis , Blood Vessel Prosthesis Implantation/instrumentation , COVID-19/complications , COVID-19/diagnosis , Coronary Artery Disease/complications , Coronary Artery Disease/diagnostic imaging , Fatal Outcome , Humans , Leriche Syndrome/complications , Leriche Syndrome/diagnostic imaging , Male , Middle Aged , Polyethylene Terephthalates , Treatment Outcome
10.
Am J Otolaryngol ; 42(2): 102872, 2021.
Article in English | MEDLINE | ID: covidwho-1002273

ABSTRACT

AIM: This study was aimed to compare the virological, suspect reported outcomes and provider preferences during COVID-19 swab taking procedure used for sampling. METHODS: The COVID-19 suspects are subjected to nasopharyngeal (NP) and oropharyngeal (OP) swabs for testing. Two types of swabs (Nylon and Dacron) are used for sample collection. Prospectively each suspect's response is collected and assessed for self-reported comfort level. The provider's experience with each suspect and virological outcomes recorded separately. The sample adequacy was compared based on swab types and demographic characteristics. RESULTS: A total of 1008 COVID-19 suspects were considered for comparison of various outcomes. Dacron and flocked Nylon swab sticks are used for taking 530 and 478 samples, respectively. Suspects who underwent the procedure using Nylon swabs were six times more likely to have pain/discomfort compared to when Dacron swab was used (Adj RR (95% CI: 6.76 (3.53 to 13, p=0.0001))). The providers perceived six times more resistance with the Nylon swabs compared to Dacron Swabs (Adj RR (95% CI: 5.96 (3.88 to 9.14, p=0.0001))). The pediatric population had a higher rate of blood staining in Dacron swab [Dacron 66 (80.5%); Nylon 51 (54.8%) p=0.0001]. The sample adequacy rate and laboratory positivity rate were not significantly different from each other. CONCLUSIONS: Given the comparable virological outcomes, the difference in suspect and providers comfort should drive swab selection based on characteristics of the suspects. The bulbous Nylon swab caused more pain/discomfort in adults compared to Dacron.


Subject(s)
Attitude of Health Personnel , COVID-19 Testing , Nasopharynx/virology , Oropharynx/virology , Patient Comfort , Specimen Handling/instrumentation , Adolescent , Adult , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Nylons , Polyethylene Terephthalates , Prospective Studies , Young Adult
11.
Diagn Microbiol Infect Dis ; 99(1): 115209, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-764481

ABSTRACT

Nasopharyngeal flocked swabs placed in viral transport media (VTM) are the preferred collection methodology for respiratory virus testing. Due to the rapid depletion of available reagents and swabs, we have validated an alternative swab placed in phosphate-buffered saline (PBS) for use in respiratory virus testing in a SARS-CoV-2 real-time polymerase chain reaction assay and a multiplexed respiratory virus panel. We collected nasopharyngeal (NP) swabs and oropharyngeal (OP) swabs from 10 healthy volunteers. Flocked swabs were placed in VTM and alternative swabs in PBS. In this feasibility study, we show that NP collection is better for detection of human material than OP collection, as measured by significantly lower RNase P gene cycle threshold values, and that a Dacron polyester swab in PBS shows equivalent detection of SARS-CoV-2 and RSV to a flocked swab in VTM in contrived specimens. Diluted SARS-CoV-2-positive patient specimens are detectable for up to 72 h at 4 °C.


Subject(s)
COVID-19/diagnosis , SARS-CoV-2/isolation & purification , Specimen Handling/methods , COVID-19 Nucleic Acid Testing , Culture Media , Feasibility Studies , Humans , Nasopharynx/virology , Oropharynx/virology , Polyethylene Terephthalates , Respiratory Syncytial Virus, Human/genetics , Respiratory Syncytial Virus, Human/isolation & purification , SARS-CoV-2/genetics
SELECTION OF CITATIONS
SEARCH DETAIL